

A076834


Number of inequivalent projective binary linear [n,k] codes of any dimension k <= n. Also the number of simple binary matroids on n points.


2



1, 1, 2, 3, 5, 10, 20, 42, 102, 276, 857, 3233, 15113, 91717, 751479
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


COMMENTS

A code is projective if all columns are distinct and nonzero.


REFERENCES

H. Fripertinger and A. Kerber, in AAECC11, Lect. Notes Comp. Sci. 948 (1995), 194204.
D. Slepian, Some further theory of group codes. Bell System Tech. J. 39 1960 12191252.
M. Wild, Enumeration of binary and ternary matroids and other applications of the BrylawskiLucas Theorem, Preprint Nr. 1693, Tech. Hochschule Darmstadt, 1994


LINKS

Table of n, a(n) for n=1..15.
H. Fripertinger, Isometry Classes of Codes
Index entries for sequences related to binary linear codes


CROSSREFS

Row sums of A076833. A diagonal of A091008.
Sequence in context: A262482 A293323 A257113 * A023170 A125312 A300550
Adjacent sequences: A076831 A076832 A076833 * A076835 A076836 A076837


KEYWORD

nonn,more


AUTHOR

N. J. A. Sloane, Nov 21 2002


EXTENSIONS

More terms from Marcel Wild, Nov 26 2002


STATUS

approved



